
Int. J. Advanced Networking and Applications
Volume: 05, Issue: 02, Pages:1867-1872 (2013) ISSN : 0975-0290

1867

Medical Web Interface for Wireless Sensor
Networks

Andrei Maciuca
Department of Computer Science, Politehnica University, Bucharest, Romania

Email: andrei.maciuca@gmail.com
Dan Popescu

Department of Computer Science, Politehnica University, Bucharest, Romania
Email: dan_popescu_2002@yahoo.com

---ABSTRACT---
The current paper proposes a smart web interface designed for monitoring the status of the elderly people. There
are four main user types used in the web application: the administrator (who has power access to all the
application’s functionalities), the patient (who has access to his own personal data, like parameters history,
personal details), relatives of the patient (who have administrable access to the person in care, access that is
defined by the patient) and the medic (who can view the medical history of the patient and prescribe different
medications or interpret the received parameters data). The main purpose of this web application is to receive and
analyze received data from body sensors like accelerometers, EKG or GSR sensors, or even ambient sensors like
gas detectors, humidity, pressure or temperature sensors. After processing the harvested information, the web
application decides if an alert has to be triggered and sends it to a specialized call center (for example, if the
patient’s body temperature is over 40 degrees Celsius).

Keywords – java enterprise edition 6, JBoss Application Server, medical, MySql, Primefaces, wireless sensors

Date of Submission : August 04, 2013 Date of Acceptance : October 01,2013

I. INTRODUCTION

Wireless sensor networks (WSN) have gained
considerable popularity due to their flexibility in solving
problems in different application domains and have the
potential to change our lives in many different ways.
Also, the latest advances in VLSI technology and MEMS
(Micro-Electro-Mechanical Systems), as well as in
wireless communication technology made it possible to
manufacture sensor networks where very large numbers of
very small nodes are scattered across some environment in
order to sense and report to a central node (user)[1].
As current healthcare systems are facing new challenges
because of the high rate of growth of the elderly
population, the necessity of wireless sensor networks in
our lives is becoming more and more obvious. That is why
the impeding health crisis has attracted researchers to
implement optimal and quick health solutions. The non-
intrusive and ambulatory health monitoring of patient’s
vital signs with real time updates of medical records via
the internet provides economical solutions to the
challenges that health care systems face[2].
 WSNs have been successfully applied in various
application domains, like military applications, area
monitoring, home monitoring, transportation, health
applications (some of the health applications for sensor
networks are supporting interfaces for the disabled,
integrated patient monitoring, diagnostics and drug
administration in hospitals, tele-monitoring of human
physiological data and tracking & monitoring doctors or
patients)[3].

It is mandatory for the users of wireless sensor networks to
have access to a friendly interface where they can see the
history of sensor readings. Beside these logging
information, the users must be provided with a medical
interpretation of the readings. Of course, it would be best
if they could have access to all these facilities from
anywhere, without installing any additional third party
software. This is where web applications come and offer
solution to all these demands. They can be accessed from
any device with internet access and web browser
capabilities, specialized persons like medics can have
access to a special area of the application and interpret the
patients sensor readings and provide medication and
advices for a healthier life.

II. WEB APPLICATION CONTEXT
The web application has to integrate with the WSN and
collect harvested data parameters in order to analyze the
received information. Therefore, the communication
between the sensors and the application is done using the
ZigBee protocol. In figure 1 a chart has been represented
that shows why ZigBee is the correct approach for this
communication. The main reasons for choosing ZigBee
were low consumption, complexity and costs. Even if the
data sent ratio is low, this is not an impediment in our case
[4], [5].
After receiving the harvested data from sensors, the
information has to be stored in a database. The persisted
data is first analyzed in order to see if there were any
faults in the communication. Also, if received data transfer
is similar over a period of time, only the most relevant
pieces of information will be persisted.

Int. J. Advanced Networking and Applications
Volume: 05, Issue: 02, Pages:1867-1872 (2013) ISSN : 0975-0290

1868

Fig. 1. ZigBee positioning compared to other wireless

technologies

Afterwards, the saved data is used for showing patient’s
history or creation of a chart with the values received from
a sensor (for example, a chart containing the patient’s
temperature for a specified amount of time will be
presented in the application).
Beside the logging functionality of the parameters, the
most important part of the application is triggering alerts.
These alerts are vital to the system in case an unfortunate
event happens. As the application is designed for the
elderly people, fast requests to the hospital, firemen or
relatives have to be initiated in case of alerts. There are
two ways of sending alerts available in the system: via
email and SMS. In most of the cases, both methods are
required in order to have a faster response. Emails are sent
to a call center that is available at any time. From this call
center, a human operator redirects the alerts to the most
appropriate specialized institution. In case the web
application has received data from gas sensors that
indicate an abnormal air composition, it is very probable
that there is a fire in the patient’s house; therefore, the
firemen are alerted. On the other hand, if the web
application receives data from the body sensors indicating
that the patient’s temperature is very high (the maximum
and minimum size for each parameter will be defined by a
specialized person, in most of the cases doctors), then the
human operator will redirect this request to an ambulance
that will go to the patient’s house and take the required
actions.

III. WEB APPLICATION DATABASE DESIGN
The chosen database for persistence of all required
information was MySQL. The main reason for this
selection was that MySQL is open source, so there are
absolutely no costs when going in production mode.
In figure 2 is presented a print screen from MySQL
Workbench, which offers all the functionalities needed
from a database client.

Fig 2. Database tables

The given name of the schema was mwsni (Medical
Wireless Sensor Network Interface). It contains seven
tables:

1. The ALERTS table with the following columns:
- ID – primary key
- TRIGGERED_DATE – the date when the alert

was triggered
- DESCRIPTION – a description for the alert,

optional field
- PARAMETER_ID – foreign key to the

PARAMETER table, stores the id of the
parameter that sent an abnormal value

- PARAMETER_REGISTERED – the value that
was received from the parameter and is not
located within the specified interval

2. The INSTITUTION table that contains the
following columns:
- ID – primary key
- NAME – name of the institution
- INSTITUTION_TYPE_ID – foreign key to

the INSTITUTION table, stores the id of the
institution

- ADDRESS – address of the institution
- DESCRIPTION – a description of the

institution, optional field
3. The INSTITUTION_TYPE table that is a

nomenclature of the institution
- ID – primary key
- NAME – name of the institution type (like

hospital etc.)
4. The PARAMETER_ACCEPTED_VALUES

table stores the minimum and maximum values
that are accepted for a parameter (these values
have to be decided by a specialized person like
doctors)
- ID – primary key
- PARAMETER_ID - foreign key to the

PARAMETER table, stores the id of the
parameter in cause

Int. J. Advanced Networking and Applications
Volume: 05, Issue: 02, Pages:1867-1872 (2013) ISSN : 0975-0290

1869

- USER_ID - foreign key to the USER table,
stores the id of the user that the values are
applied to

- MIN_VALUE – the minimum value of the
parameter

- MAX_VALUE – the maximum value of the
parameter

5. The PARAMETERS table stores all the
parameters that can be received from sensors
(both ambient: light, pressure, CO2 composition,
ambient temperature etc and body: beats per
minute, arterial pressure, EKG, GSR, body
temperature etc.)
- ID – primary key
- NAME – name of the parameter
- DESCRIPTION – description of the

parameter, optional field
6. The USER table stores all the users that have

access in the application
- ID – primary key
- NAME – name of the user
- PASSWORD – password required for login,

it is saved in an encrypted state in the
database using MD5

- EMAIL – email of the user
- ADDRESS – address of the user
- PHONE – the user’s phone
- USER_TYPE_ID – foreign key to the

USER_TYPE table, stores the id of the
user’s type

- INSTITUTION_ID – foreign key to the
INSTITUTION table, stores the id of the
institution that the user is allocated to

- USERNAME – the username required for
login

7. The USER_TYPE table, which is a nomenclature
for the user table
- ID – primary key
- NAME – name of the user type (like

administrator, patient, doctor or relative)

IV. TECHNOLOGIES AND TOOLS USED FOR
DEVELOPING THE WEB APPLICATION
All the technologies and tools used for development are
the latest in the branch.
The IDE used for development was Eclipse Kepler. This
was just a personal choice, other IDEs like NetBeans or
IntelliJ Idea can be used without having any integration
problems. The project is of a Maven project type. For
building, the m2e connectors provided as plugin in the
Eclipse IDE were used. Below are presented some
snapshots of attributes defined in the pom.xml file of the
project:
“<groupId>ro.mwsni</groupId>
<artifactId>mwsni</artifactId>
<version>1.0‐SNAPSHOT</version>
<packaging>war</packaging>
<name>Medical Wireless Sensor Network
Interface </name>

 <description>Medical Wireless Sensor
Network Interface </description>�
“<repositories>
 <repository>
 <id>jboss</id>
 <name>JBoss Release Repository</name>
<url>http://repository.jboss.org/maven2
</url>

 </repository>
 <!‐‐ Used for pdf generator ‐‐>
 <repository>
 <id>thirdparty‐uploads</id>
 <name>JBoss Thirdparty Uploads</name>
 <url> http://wo‐
repository.doit.com.br/content/repositories
/thirdparty/ </url>
 </repository>
 <!‐‐ The JBoss Community public
repository is a composite repository of
 several major repositories ‐‐>
 <!‐‐
http://community.jboss.org/wiki/MavenGettin
gStarted‐Users ‐‐>
 <repository>
 <id>prime‐repo</id>
 <name>PrimeFaces Maven
Repository</name>
<url>http://repository.primefaces.org
</url>
 <layout>default</layout>
 </repository>
 <repository>
 <id>jboss‐public‐repository</id>
 <name>JBoss Repository</name>
 <url>http://repository.jboss.org/nexus/co
ntent/groups/public </url>
 <!‐‐ These optional flags are
designed to speed up your builds by
reducing remote server calls ‐‐>
 <releases>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 </repositories>”
Also, these are some of the dependencies used for the
project:
“<dependency>
 <groupId>org.jboss.seam.security</groupId
>

<artifactId>seam‐security‐api
</artifactId>

 <version>3.1.0.Final</version>
 </dependency>
 <dependency>
 <groupId>joda‐time</groupId>
 <artifactId>joda‐time</artifactId>
 <version>1.6</version>
 </dependency>

Int. J. Advanced Networking and Applications
Volume: 05, Issue: 02, Pages:1867-1872 (2013) ISSN : 0975-0290

1870

 <dependency>
 groupId>org.jboss.seam.security</groupId>
 <artifactId>seam‐security</artifactId>
 <version>3.1.0.Final</version>
 </dependency>
 <dependency>
 <groupId>org.jboss.seam.faces</groupId>
 <artifactId>seam‐faces</artifactId>
 <version>3.1.0.Final</version>
 </dependency>
 <dependency>
 <groupId>com.ocpsoft</groupId>

<artifactId>prettyfaces‐jsf2
</artifactId>

 <version>3.3.3</version>
 </dependency>
 <dependency>
 <groupId>org.jboss.weld</groupId>
 <artifactId>weld‐core</artifactId>
 <version>1.1.9.Final</version>
 </dependency>

The chosen application server was JBoss version 7.1.1.
JBoss Application Server 7 is a fast, powerful,
implementation of the Java Enterprise Edition 6
specification. The state-of-the-art architecture built on the
Modular Service Container enables services on-demand
when your application requires them. JBoss Application
Server 7.1.1.Final release is a certified implementation of
the Java Enterprise Edition 6 Web Profile specification.
There are some example technologies from Java
Enterprise Edition Platform that are provided in JBoss
Application Server: Java Servlet 3.0, Java Server Faces
(JSF) 2.0, Java Server Pages (JSP) 2.0 and Expression
Language (EL) 1.2, Context and Dependency Injection
(CDI) 1.0, Dependency Injection for Java Enterprise Java
Beans 3.1, Java Persistence API 2.0, Bean Validation 1.0,
Java Message Service (JMS) API 1.1, JAX-RS for
RESTfull Web Services 1.1, JAX-WS for XML based web
services 2.2 and so on [6].
As mentioned before, Java Persistence API was used for
the persistence of the data. This technology provides Java
developers with an object/relational mapping facility for
managing relational data in Java applications. The main
areas covered by the Java Persistence are the following:

• The Java Persistence API
• The query language
• The Java Persistence Criteria API
• Object/relational mapping metadata

Below is presented the parameter model class in order to
show the use of annotations JPA provides.
@Entity
@Table(name = "PARAMETER")
public class Parameter implements
Serializable {
 private static final long
serialVersionUID = 1L;
 private Long id;
 private String name;
 private String description;

 public Parameter() {
 }
 public Parameter(Long id) {
 this.id = id;
 }
 @Id
 @Basic(optional = false)
 @GeneratedValue(strategy =
GenerationType.IDENTITY)
 @Column(name = "id", nullable = false)
 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }
 @Column(name = "NAME")
 public String getName() {
 return name;
 }
 public void setName(String name) {
 this.name = name;
 }
 @Column(name = "DESCRIPTION")
 public String getDescription() {
 return description;
 }
 public void setDescription(String
description) {
 this.description = description;
 }
 @Override
 public int hashCode() {
 int hash = 0;
 hash += (id != null ? id.hashCode() :
 0);
 return hash;
 }

 @Override
 public boolean equals(Object object) {
 if (!(object instanceof Parameter))
{
 return false;
 }
 Parameter other = (Parameter)
object;
 if ((this.id == null && other.id !=
null) || (this.id != null &&
!this.id.equals(other.id))) {
 return false;
 }
 return true;
 }
 @Override
 public String toString() {
 return "Parameter[id=" + id + "
]";
 }

Int. J. Advanced Networking and Applications
Volume: 05, Issue: 02, Pages:1867-1872 (2013) ISSN : 0975-0290

1871

Another used technology was Enterprise Java Beans 3.1.
Enterprise beans are Java EE elements that implement
Enterprise JavaBeans (EJB) technology. They run in the
EJB container, a runtime environment within the
Application Server. Even if the EJBs are transparent to the
application developer, the EJB container offers system-
level services like transactions or security to its enterprise
beans. These services have to ability to build and deploy
enterprise beans in a very fast manner, forming the
foundation of transactional Java EE applications.
Being written in the Java programming language, an
enterprise bean is a server-side component that
encapsulates the business logic of the application. The
business logic represents the code that has as main task to
reproduce what the application has to do. In the proposed
application, for example, the enterprise beans might
implement the business logic in methods called
checkParameterStatus() or triggerAlert(). By invoking
these methods, clients can access the parameter or alert
services provided by the application.
Enterprise beans also simplify the development of large,
distributed applications. As the EJB container provides
system-level services to enterprise beans, the bean
developer can concentrate on business problems. The EJB
container, rather than the developer bean, is responsible
for system-level services such as transaction management
and security authorization.
The beans contain the application’s business logic, not the
client, so this helps the client developer to concentrate on
the presentation of the client. The client developer does
not have to code the routines that implement business rules
or access databases. As a result, the clients are thinner, a
benefit that is particularly important for clients that run on
small devices.
As enterprise beans are portable components, the
application assembler can build new applications from
existing beans. These applications can run on any
compliant Java EE server if and only if they use the
standard APIs.
Context dependency injection (CDI) is a core technology
in the application. The most fundamental services
provided by CDI are as follows:

• Contexts: CDI has the ability to bind the lifecycle
and interactions of stateful components to well-
defined but extensible lifecycle contexts.

• Dependency injection: The main purpose of using
CDI is its ability to inject components into an
application in a type safe way, including the
ability to choose at deployment time which
implementation of a particular interface to inject

In addition, CDI provides the following services:
• Integration with the Expression Language (EL),

which allows any component to be used directly
within a JavaServer Faces page or a JavaServer
Pages page

• The ability to decorate injected components
• The ability to associate interceptors with

components using typesafe interceptor bindings
• An event-notification model
• A web conversation scope in addition to the three

standard scopes (request, session, and

application) defined by the Java Servlet
specification

• A complete Service Provider Interface (SPI) that
allows third-party frameworks to integrate
cleanly in the Java EE 6 environment

A major theme of CDI is loose coupling. CDI does the
following:

• Decouples the server and the client by means of
well-defined types and qualifiers, so that the
server implementation may vary

• Decouples the lifecycles of collaborating
components by doing the following:
o Making components contextual, with

automatic lifecycle management
o Allowing stateful components to interact

like services, purely by message passing
• Completely decouples message producers from

consumers, by means of events
• Decouples orthogonal concerns by means of Java

EE interceptors
Along with loose coupling, CDI provides strong typing by

• Eliminating lookup using string-based names for
wiring and correlations, so that the compiler will
detect typing errors

• Allowing the use of declarative Java annotations
to specify everything, largely eliminating the
need for XML deployment descriptors, and
making it easy to provide tools that introspect the
code and understand the dependency structure at
development time [7].

For the user interface part, the implementation offered by
Primefaces for JSF 2.0 was chosen. (as it can be seen in
the pom.xml file presented). PrimeFaces is a lightweight
library, all decisions made are based on keeping
PrimeFaces as lightweight as possible. Usually adding a
third-party solution could bring a overhead however this is
not the case with PrimeFaces. It is just one single jar with
no dependencies and nothing to configure. Components in
PrimeFaces are developed with a design principle which
states that "A good user interface component should hide
complexity but keep the flexibility" while doing so [8].
The simplicity and easy to develop attractive user interface
elements make Primefaces a perfect choice. For example,
in order to implement a sortable, navigable and filtered
data table, only a few lines of code have to be written
(below is presented the data table for the parameter
administration):
“<p:dataTable id="parametersList"
var="parameter"
value="#{parameterAction.parameterDataModel
}" paginator="true" rows="5"
paginatorTemplate="{CurrentPageReport}
{FirstPageLink} {PreviousPageLink}
{PageLinks} {NextPageLink} {LastPageLink}
{RowsPerPageDropdown}"
rowsPerPageTemplate="5,10,15" lazy="true"
paginatorPosition="bottom"
emptyMessage="#{messages['primefaces.datata
ble.emptyMessage']}">

Int. J. Advanced Networking and Applications
Volume: 05, Issue: 02, Pages:1867-1872 (2013) ISSN : 0975-0290

1872

<p:column sortBy="#{parameter.id}"
filterBy="#{parameter.id}">

<f:facet name="header">
<h:outputText

value="#{messages['parameter.id']}" />
 </f:facet>
 <h:outputText value="#{parameter.id}" />
 </p:column>
 <p:column sortBy="#{parameter.name}"
filterBy="#{parameter. name}">
 <f:facet name="header">
 <h:outputText
value="#{messages['parameter.name']}" />
 </f:facet>
 <h:outputText value="#{parameter.name}"
/>
 </p:column>
 <p:column
sortBy="#{parameter.description}"
filterBy="#{parameter. description }">
 <f:facet name="header">
 <h:outputText
value="#{messages['parameter.description']}
" />
 </f:facet>
 <h:outputText
value="#{parameter.description}" />
 </p:column>
 <p:column>
 <f:facet name="header">
 <h:outputText
value="#{messages['actions']}" />
 </f:facet>
 <p:commandButton
id="viewParameterButtonId" icon="ui‐icon‐
view"
title="#{messages['actions.view']}"
action="#{parameterAction.view(parameter)}"
update=":parameterDialogForm"
oncomplete="parameterDialog.show();">
<p:resetInput target=":parameterDialogForm"
/> </p:commandButton>
 <p:commandButton
id="ediParameterButtonId" icon="ui‐icon‐
edit" title="#{messages['actions.edit']}"
update=":parameterDialogForm"
action="#{parameterAction.edit(parameter)}"
oncomplete="parameterDialog.show();">
<p:resetInput target=":parameterDialogForm"
/></p:commandButton>
<p:commandButton
id="deleteParameterButtonId"
title="#{messages['actions.delete']}"
update=":parametersListForm"
action="#{parameterAction.deleteActivate(pa
rameter)}" />
</p:column>
<f:facet name="footer">

<p:commandButton id="addParameterButtonId"
icon="ui‐icon‐add"
title="#{messages['global.action.add']}"
action="#{parameterAction.add()}"
update=":parameterDialogForm"
oncomplete="parameterDialog.show();">
<p:resetInput target=":parameterDialogForm"
/></p:commandButton>
</f:facet>
</p:dataTable>”

V. CONCLUSION
In conclusion, wireless sensor parameters interpretation in
a web modern way can be vital in improving the quality of
life of the elderly or people with chronic diseases. The
development of a modern web application that can be
accessed from any device with internet access and a web
browser is essential in tracking and monitoring the current
state of both ambient and body parameters of the patient.
Having a very administrable application is a must because,
for example, the minimum and maximum values of
parameters can differ from person to person (this is the
reason for adding the user_id column in table
parameter_accepted_values).

ACKNOWLEDGEMENTS
This work was supported in part by the Romanian
Ministry of Education and Research under grant of
POSDRU Project ID 76813.

REFERENCES
[1] Juan J. Villacorta, María I. Jiménez, Lara del Val and

Alberto Izquierdo, A Configurable Sensor Network
Applied to Ambient Assisted Living, Sensors 2011,
11, 10724-10737; doi:10.3390/s111110724

[2] Khan, J. Y., and Yuce, M. R., Wireless Body Area
Network (WBAN) for medical applications. In:
Campolo, D. (Ed.), New Developments in Biomedical
Engineering. INTECH, 2010. ISBN: 978-953-7619-
57-2

[3] Shandi, R., Noroozi, S., Roushanbakhti, G., Heaslip,
V., and Liu, Y., Wireless technology in the evolution
of patient monitoring on general hospital wards. J.
Med. Eng. Technol. 34(1):51–63, 2010

[4] Sahin Farahani, ZigBee Wireless Networks and
Tranceivers, Elsevier, USA, 2008

[5] George Aggelou, Wireless Mesh Networking,
McGraw-Hill Communications, USA, 2009.

[6] https://docs.jboss.org/author/display/AS71/Getting+S
tarted+Guide

[7] http://docs.oracle.com/javaee/6/tutorial/doc/giwhl.ht
ml

[8] http://www.primefaces.org/whyprimefaces.html

